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Inverse Heat Conduction Problem of an Elliptical Plate  
  S. D. Bagde 

  
Abstract- This paper contains a heat conduction problem for an elliptical plate with heat transfer on the upper and lower surfaces, to determine 

the temperature with the help of Mathieu function and integral transform technique 
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1. INTRODUCTION                                                                     
 The inverse problem is very important in view of its relevance’s 
to various industrial machines subject to heating such as main 
shaft of lathe and turbine, roll of a rolling mill and measurement 
of aerodynamic heating.  
In present problem, an attempt has been made to determine the 
temperature distribution and unknown temperature gradient, in 
which the solutions are expressed in Mathieu and modified 
Mathieu functions with known boundary conditions using finite 
Marchi-Fasulo transform and Mathieu transform techniques.  
 

2. STATEMENT OF THE PROBLEM-I 
Consider on elliptic plate, and then the heat conduction equa-
tion in elliptic coordinate is given by   
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 Subject to interior conditions 
                                         

   ( ) ( )zfTzT ,,, 0 hhξ =   ba ≤≤ ξ  , 
 

    hzh ≤≤− (Known)   
                                                                                    (2)  
The boundary conditions are 
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( )[ ] ),(,, zgzT b hhξ ξ ==     (Unknown)                                 (5) 
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The equations (1) to (5) constitute the mathematical formulation 
of the problem under consideration. 
 
3. SOLUTION OF THE PROBLEM 
Applying finite Marchi-Fasulo transform with respect to z de-

fined in [4] as 
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To the equations (1), (2) using (3), (4), one obtains 
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in which the Eigen values ma  are the solutions of the equation  
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∗∗
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Where T  denotes the Marchi-Fasulo transform of T  and ς  de-
notes the Marchi-Fasulo transform parameter. 
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If the temperature is symmetric about both axes of elliptical 
plate, the appropriate solution of (8) is  
 
( ) ( ) ( ) ),(,, 2,22 qecqeCTfCT nnnnn −×−−=

∗∗∑ hξςhξ                       (9) 
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In order to get the value of constant ,2nC  multiply (10) 

by ( )qeC n −,2 h integrate with respect to h  from 0 to π2  and 

making use of the following result: 
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Substitute (14) in (9) one obtains 
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Applying inverse Marchi-Fasulo transform to the equation (15) 
and using condition (5), one obtains the temperature distribu-
tion and unknown temperature gradient as 
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( ) )sin()cos( zaWzaQzP mmmmm −=   

  
( ) ( ) )sin()cos( 2121 hahaaQ mmmm bbaa −++=    

 
( ) ( ) )sin()cos( 1221 hahaW mmm aabb −++=  

 
Equation (16) and (17) are the desired solution of the problem 
with  121 == bb     and   ., 2211 kk == aa   
  
 4. STATEMENT OF THE PROBLEM-II 
 
If we take elliptical plate with heat transfer on the upper and 
lower surfaces, to be two dimensional and usual elliptical coor-
dinates ( )hξ , , the heat conduction equation for solution is  
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Subject to the initial condition 
 
( ) 00,,, =zT hξ                                                                  

(19)
      

 
 
the interior condition 
( ) ( )tzfTtzT ,,,,, 0 hhξ =   ba ≤≤ ξ  , hzh ≤≤− (known)                

 
And the boundary conditions are 
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( )[ ] ),,(,,, tzgtzT b hhξ ξ ==     (Unknown)                                (22) 

 
Where 1k

 

and 2k

 

are radiation constant on the plane surfaces. 
Equation (18) to (22) constitutes the mathematical formulation 
of the problem under consideration. 
 

5. SOLUTION OF THE PROBLEM 
 
Applying finite Marchi-Fasulo transform with respect to z de-
fined in [4] as 
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To the equations (18), (19), (22) and using (20), (21), one obtains 
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in which the Eigen values ma  are the solutions of the equation 
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Where T  denotes the Marchi-Fasulo transform of T  and ς  de-
notes the Marchi-Fasulo transform parameter. 
Applying Laplace transform defined in [5] to the equation (23) we 
get 
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T  
is the Laplace transform of T  and s is the Laplace transform 

parameter.
                                                                                   

  
If the temperature is symmetric about both axes of elliptical 
plate, the appropriate solution of (23) is  
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are defined as modified and 

ordinary Mathieu function of order 2n. Using (24) and (27) we 
get 
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In order to get the value of constant ,2nC  multiply (27) by 
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Substitute (32) in equation (27) one obtains 
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Further applying inverse Laplace transform and inverse Marchi-
Fasulo transform to the equation  (33) and using condition (22), 
one obtains the temperature distribution and unknown temper-
ature gradient as 
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( ) ( ) )sin()cos( 2121 hahaaQ mmmm bbaa −++=    

 
( ) ( ) )sin()cos( 1221 hahaW mmm aabb −++=  

 Equation (34) and (35) are the desired solution of the problem 

with  121 == bb     and   ., 2211 kk == aa  

 
6. CONCLUSION 
 In both the problems, we have determined the temperature dis-

tribution and unknown temperature gradient on outer curved 

surface of an elliptical plate with aid of Mathieu function and 

integral transform technique, using known boundary conditions. 

The results are obtained in the form of infinite series. The tem-

perature distribution and unknown temperature gradient that 

are obtained can be applied to the design of useful structures or 

machines in engineering applications. 
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